在大數據的“滋養”下,AI在越來越多的領域更懂人,讓擁有深度學習能力、不斷進化的AI幫助人類探索學習規律、開拓認知潛能,已成為人不被機器淘汰的必要之舉,根據教育部的規定,2018年秋季開學后,高中生們將要開設一門新課程:《人工智能》。
互聯網教育尤其是線上K12培優項目一直是投資熱門,直播1對1模式風口過后,教育圈內最火的應該是AI項目了。據億歐智庫的報告顯示,2017年人工智能教育融資額度達42.17億元,其中超80%屬于早期投資項目,這個賽道有望誕生多個獨角獸公司。
筆者發現,當前布局人工智能的在線教育大體分為三派:
1.教學或題庫測評類工具產品,比如作業盒子等;
2.培訓機構應用AI技術,比如好未來等;
3.人工智能教育引擎及平臺提供商,比如高木學習等。
現在擺在AI教育創投從業者面前的問題是:到底以技術實力論英雄的AI教育的泡沫有多大?真金不怕火煉的AI教育項目的核心能力在哪里?如何才能落地? 本文試做解讀。
1 為什么“自適應”其實并非真正的AI?
一位投資人朋友曾向我這樣說道:“既懂互聯網行業又完全懂本行業的業務的管理型人才不超過十個,這是在‘互聯網+’雙創浪潮中每個垂直行業頭部項目就幾家能玩轉的原因。”而認知和技術門檻更高的“AI+”情況恐怕會更加不妙,甚至很多人把“自適應”與“AI教育”劃等號。
自適應學習(Adaptive Learning)的鼻祖是美國的Knewton公司,它通過評估不同學生對知識材料掌握度進行個性化推薦,有點類似于今日頭條的興趣引擎。Knewton在國內的門徒眾多,目前大概有40多家項目宣布發力做“自適應”,比如“乂學教育”(學練測自適應)、“學吧課堂”(題庫自適應)、“英語流利說”(英語口語糾正)、“一起作業”(家長、老師在線監控)等等。
嘉御基金創始人衛哲說過,“90%的人工智能項目都是偽AI”,鑒別的依據是看項目“算法速度”,如果是代數級而不是幾何級計算那就不是“真AI”,以此來考驗自適應項目,得到的結論未免讓人失望。
初級的自適應項目是人工預設指令或編程規則推薦,高級的自適應是基于知識圖譜推薦,即使是高級的自適應項目由于沒有按照既定的教學大綱和教學目標有邏輯地展開,在具體知識學習之中并不系統。關鍵是很多自適應項目采集的是各科最優秀特級教師的能力,導致其算法本身是線性的、模擬人學習而已。
自適應的技術原理就好比AlphaGo是應用了人類最優秀圍棋大師的能力而非是完全迥異機器深度學習和自演化模型;自動駕駛AI應用了某個人類零誤差老司機的感知能力而非是基于全網海量交通大數據做運算和決策;人工智能醫生是應用了看X片最快最準的醫生的經驗而非是海量數據庫訓練;顯然按這樣的路徑訓練出的機器并非是真正的AI。
“真正擁有充分教學大數據及算法速度的‘AI教師’是能輕松超越擁有30年教齡特級教師的,并且可以突破人類的知識局限,對算法模型進行自動演化,找到人類從未嘗試過的策略。”高木學習創始人劉瞻這樣描述AI教師。
劉瞻是帝國理工學院科班出身,早在2015年開啟AI教育創業,他認為判斷真偽AI教育項目具體有三個考察維度:
1.自適應是基于模擬優秀老師的知識圖譜推薦知識,而真正的AI教育機器人則是泡在“教學實踐大數據”中做深度學習。
2.自適應主要用作知識盲點的統計,但無法分析出知識體系之間的本質聯系,用AI更重要的任務是找到行為背后的原因,比如某學生表面上二次函數是薄弱環節,既有可能是其對二次函數的各細分知識點掌握不牢,也有可能是前置知識點一次函數、函數的思想理解不透徹,還有可能是方程求解的問題;甚至有可能是抽象思維或計算能力的問題,AI會根據該學生數據和“知識路徑矩陣”,找到問題背后的原因從而匹配出最優學習路徑。
3.人類教師的情感因素能左右學生的學習效果,AI教師也應綜合考慮學生的自信心與成就感的培育與激發,從而確保學生學習過程“知”、“情”、“意”的一體化。